122 research outputs found

    Grid Workflow Modelling Using Grid-Specific BPEL Extensions

    Get PDF
    This paper discusses problems of Grid service composition using BPEL4WS. In particular, difficulties concerning the invocation of WSRF-based services are elucidated. A solution to this problem is presented by extending the BPEL specification, and an implementation based on the ActiveBPEL workflow enactment engine is described

    Steady and Stable: Numerical Investigations of Nonlinear Partial Differential Equations

    Full text link
    Excerpt: Mathematics is a language which can describe patterns in everyday life as well as abstract concepts existing only in our minds. Patterns exist in data, functions, and sets constructed around a common theme, but the most tangible patterns are visual. Visual demonstrations can help undergraduate students connect to abstract concepts in advanced mathematical courses. The study of partial differential equations, in particular, benefits from numerical analysis and simulation

    The impact of large scale licensing examinations in highly developed countries: a systematic review

    Get PDF
    BACKGROUND: To investigate the existing evidence base for the validity of large-scale licensing examinations including their impact. METHODS: Systematic review against a validity framework exploring: Embase (Ovid Medline); Medline (EBSCO); PubMed; Wiley Online; ScienceDirect; and PsychINFO from 2005 to April 2015. All papers were included when they discussed national or large regional (State level) examinations for clinical professionals, linked to examinations in early careers or near the point of graduation, and where success was required to subsequently be able to practice. Using a standardized data extraction form, two independent reviewers extracted study characteristics, with the rest of the team resolving any disagreement. A validity framework was used as developed by the American Educational Research Association, American Psychological Association, and National Council on Measurement in Education to evaluate each paper’s evidence to support or refute the validity of national licensing examinations. RESULTS: 24 published articles provided evidence of validity across the five domains of the validity framework. Most papers (n = 22) provided evidence of national licensing examinations relationships to other variables and their consequential validity. Overall there was evidence that those who do well on earlier or on subsequent examinations also do well on national testing. There is a correlation between NLE performance and some patient outcomes and rates of complaints, but no causal evidence has been established. CONCLUSIONS: The debate around licensure examinations is strong on opinion but weak on validity evidence. This is especially true of the wider claims that licensure examinations improve patient safety and practitioner competence

    Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by <it>Bacillus cereus </it>SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence.</p> <p>Results</p> <p><it>Bacillus cereus </it>SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, <it>chrIA</it>1, and two additional <it>chrA </it>genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene <it>azoR </it>and four nitroreductase genes <it>nitR </it>possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes <it>chrA</it>1 and <it>chrI </it>was induced in response to Cr(VI) but expression of the other two chromate transporter genes <it>chrA</it>2 and <it>chrA</it>3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of <it>chrIA</it>1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of <it>chrIA</it>1 in <it>B. cereus </it>SJ1 implied the possibility of recent horizontal gene transfer.</p> <p>Conclusion</p> <p>Our results indicate that expression of the chromate transporter gene <it>chrA</it>1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the <it>chrIA</it>1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of <it>B. cereus </it>SJ1.</p

    Therapeutic implications of improved molecular diagnostics for rare CNS-embryonal tumor entities: results of an international, retrospective study

    Get PDF
    BACKGROUND: Only few data are available on treatment-associated behavior of distinct rare CNS-embryonal tumor entities previously treated as "CNS-primitive neuroectodermal tumors" (CNS-PNET). Respective data on specific entities, including CNS neuroblastoma, FOXR2 activated (CNS NB-FOXR2), and embryonal tumor with multi-layered rosettes (ETMR) are needed for development of differentiated treatment strategies. METHODS: Within this retrospective, international study, tumor samples of clinically well-annotated patients with the original diagnosis of CNS-PNET were analyzed using DNA methylation arrays (n=307). Additional cases (n=66) with DNA methylation pattern of CNS NB-FOXR2 were included irrespective of initial histological diagnosis. Pooled clinical data (n=292) were descriptively analyzed. RESULTS: DNA methylation profiling of "CNS-PNET" classified 58(19%) cases as ETMR, 57(19%) as HGG, 36(12%) as CNS NB-FOXR2, and 89(29%) cases were classified into 18 other entities. Sixty-seven (22%) cases did not show DNA methylation patterns similar to established CNS tumor reference classes. Best treatment results were achieved for CNS NB-FOXR2 patients (5-year PFS: 63%±7%, OS: 85%±5%, n=63), with 35/42 progression-free survivors after upfront craniospinal irradiation (CSI) and chemotherapy. The worst outcome was seen for ETMR and HGG patients with 5-year PFS of 18%±6% and 22%±7%, and 5-year OS of 24%±6% and 25%±7%, respectively. CONCLUSION: The historically reported poor outcome of CNS-PNET patients becomes highly variable when tumors are molecularly classified based on DNA methylation profiling. Patients with CNS NB-FOXR2 responded well to current treatments and a standard-risk-CSI based regimen may be prospectively evaluated. The poor outcome of ETMR across applied treatment strategies substantiates the necessity for evaluation of novel treatments

    A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Get PDF
    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts
    corecore